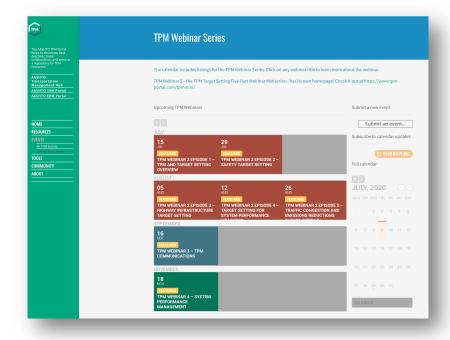
Transportation Performance Management Webinar Series

System Performance Management – Focus on Accessibility

Sponsored by the TPM Pooled Fund with Support from AASHTO CPBM Leadership and FHWA



November 18, 2020 TPM Webinar 4

Transportation Performance Management Webinar Series

- Our regular webinar series is held every two months, on topics such as communications, system performance management, data sources, and many more to come!
- Today is the 4th webinar in the bi-monthly series
- We welcome ideas for future webinar topics and presentations
- Use the webinar Q&A panel during the webinar
 - Submit questions for today's presenters
 - Submit ideas for future webinar topics

Welcome

The TPM Pooled Fund, the AASHTO Committee on Performance Based Management, and FHWA are pleased to sponsor this webinar series!

 Sharing knowledge is a critical component of advancing performance management practice

Webinar Agenda

Welcome and Introduction 2:00 Christos Xenophontos (Rhode Island DOT), Matt Hardy (AASHTO) and Lori Richter (Spy Pond Partners, LLC) FHWA Perspective on Accessibility 2:10 Jeremy Raw (FHWA) **Accessibility Studies Underway** 2:25 Deanna Belden (Minnesota DOT) Partnerships and Case Examples in Florida 2:45 Monica Zhong (Florida DOT)

Applications of Accessibility Tools and Data

Derek Krevat (Massachusetts DOT)

3:25 Q&A and Wrap Up

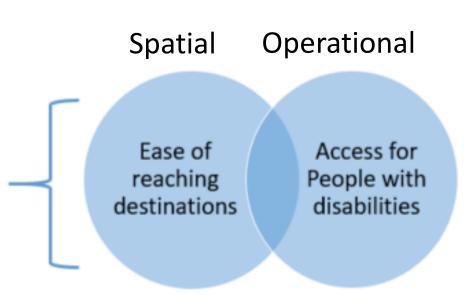
3:05

U.S. Department of Transportation

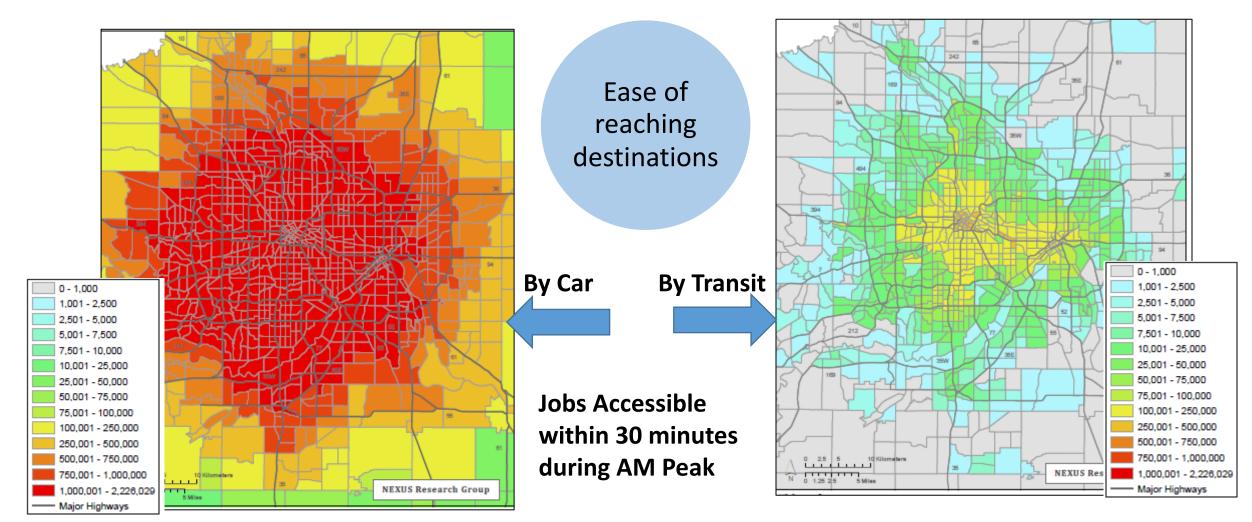
Federal Highway Administration

FHWA Accessibility Activities

Jeremy Raw
Office of Planning, Environment and Realty
November 18, 2020

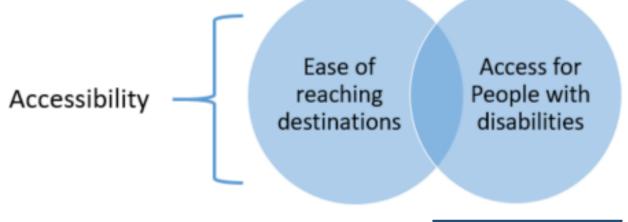

Defining Transportation Accessibility

Ease of Reaching Destinations:


- Spatial concept
 - Measures the ease of reaching destinations distributed geographically
 - ➤ Focus on multimodal transportation options, intermodal transfers, and connectivity

Accessibility

- Accessibility for People with Disabilities:
 - Mobility/Operational concept
 - ➤ In transportation context, focus on providing mobility to people with disabilities.



Visualizing Spatial Access by Mode

Mobility Performance - Complete Trips

FHWA Accessibility Performance Resources

National Research and Evaluation

National Accessibility Evaluation – Pooled Fund Study (2015-2020)

Emerging Technologies and Opportunities for Improved Mobility and Safety in Rural Areas (2018-2021)

Geo-Economics System Modeling (2018-2021)

State and Regional Technical Assistance/Capacity Building

Health in Transportation Corridor Planning Framework (2016)

The Why and How of Measuring Access to Opportunity (2017)

Integrating Shared Mobility in Multimodal Planning (2018)

Guidebook for Measuring Multimodal Network Connectivity (2018)

Community Connections Innovations Handbook and Toolkit (2019)

Research: National Accessibility Policy and Evaluation

- National Accessibility Evaluation Pooled Fund Study (2015-2020) http://access.umn.edu/research/ pooledfund/index.html
- Emerging Technologies and Opportunities for Improved Mobility and Safety in Rural Areas (2018-2021)
- Geo-Economics Modeling System (2018-2021)

ACCESSIBILITY OBSERVATORY

National Accessibility Evaluation Pooled-Fund Study

The University of Minnesota's Accessibility Observatory has created a national accessibility dataset at the census block level. The five-year study is funded through the Transportation Pooled Fund Program, a part of the National Cooperative Highway Research Program. The Minnesota Department of Transportation serves as the lead agency.

Updated annually, the new dataset describes accessibility to jobs for both driving and transit across the entire United States. Study partners are able to use the dataset for local transportation system evaluation, performance management, planning, and research efforts.

Each pooled-fund partner has direct digital access to the accessibility datasets for the jurisdictions of all partners and receives detailed reports of local accessibility trends and patterns. The study also is producing and publishing a series of reports summarizing the accessibility datasets for the 50 largest metropolitan areas.

Benefits of Accessibility Metrics

Transportation projects are undertaken to provide connectivity—the ability for people or things to physically travel—between locations, or to lower travel times where connectivity already exists. As long-term infrastructure investments, transportation systems are not built to satisfy individual trips at specific times, but rather to provide capacity that can be used to satisfy a huge variety of potential trips over the system's lifetime. This potential for interaction can be regarded as the fundamental product of transportation systems.

Accessibility metrics directly reflect this potential by combining network travel times with the locations and value of the many origins and destinations served by a multimodal transportation system. Accessibility combines the simpler concept of mobility with an understanding that travel is driven by a desire to reach destinations.

Data Sources

Accurate accessibility measurements rely on detailed, up-to-date information about transportation networks. Observatory staff perform accessibility calculations using commercially available, GPS-based speed measurements and published transit schedules.

- Transit. Digital schedule datasets, published by transit agencies across the country, describe the
 minute-by-minute arrivals and departures of buses, trains, streetcars, and ferries. These schedules
 are combined with pedestrian network data from OpenStreetMap to calculate door-to-door travel
 times for transit trips.
- Driving. The Observatory has a licensing agreement with TomTom, a global leader in navigation
 and mapping products, for use of its map and historical speed data. TomTom's MultiNet and
 Speed Profile datasets provide road network and historical speed information with coverage of the
 entire U.S., from freeways to local streets.

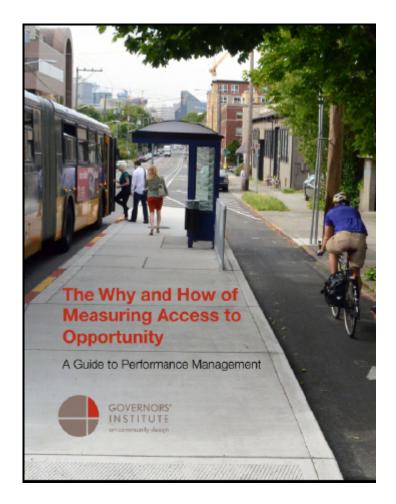
Iniversity of Minnesota

Technical Assistance: Capacity Building Resources

- Health in Transportation Corridor Planning Framework (2016)
 <u>https://www.fhwa.dot.gov/planning/health_in_transportation/planning</u>
 framework/
- The Why and How of Measuring Access to Opportunity: A Guide to Performance Management (2017)

https://smartgrowthamerica.org/resources/measuring-access-toopportunity/

 Guidebook for Measuring Multimodal Network Connectivity (2018)


https://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/multimodal_connectivity/

 Integrating Shared Mobility in Multimodal Planning: Improving Regional Performance Goals to Meet Public Goals (2018)

https://www.planning.dot.gov/documents/SharedMobility_Whitepape r_02-2018.pdf

 Community Connections Innovations Handbook and Toolkit (2019)

https://www.fhwa.dot.gov/planning/community_connections/handbook

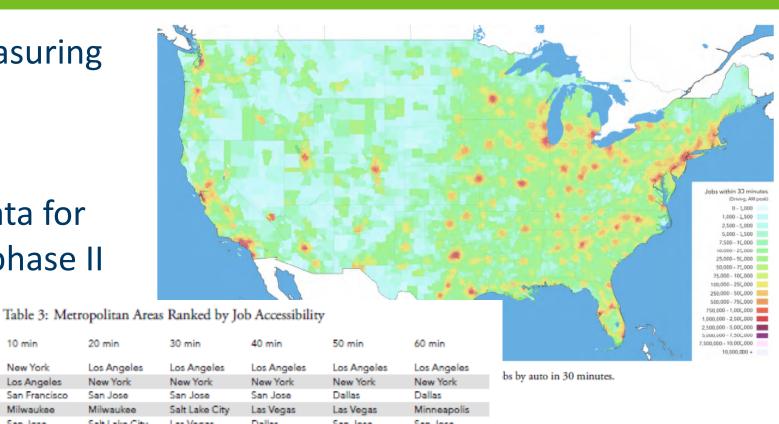
Research: FTA Accessibility Metrics

"Mobility Performance Metrics for Integrated Mobility and Beyond" Report (2020)

- TransitCenter, Applied Predictive Technologies (a Mastercard Company), and Texas A&M Transportation Institute
- This report presents traveler-centric mobility performance strategies and metrics.
- The report discusses data sources and data integration strategies for the application of the new mobility performance measures.

Accessibility Studies Underway

Deanna Belden
Director of Performance, Risk & Investment Analysis


TPM Webinar #4

Outline

- National accessibility studies underway
 - National Accessibility Evaluation
 - NCHRP 08-121 Accessibility Measures in Practice
- MnDOT studies/implementation efforts
 - Rethinking I-94
 - Accessibility Pilot Project

National Accessibility Evaluation/Access Across America

- Pooled fund project measuring multimodal accessibility nationwide
- Wrapping up phase I (data for 2015-2019); beginning phase II

Los Angeles	1.1				
Now York	New York	New York	New York	New York	 bs by auto in 30 minu

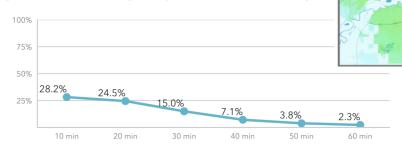
	Average						
1	Los Angeles	New York	Los Angeles				
2	New York	Los Angeles	New York				
3	Dallas	San Francisco	San Jose	San Jose	San Jose	Dallas	Dallas
4	San Jose	Milwaukee	Milwaukee	Salt Lake City	Las Vegas	Las Vegas	Minneapolis
5	Chicago	San Jose	Salt Lake City	Las Vegas	Dallas	San Jose	San Jose
6	Minneapolis	Salt Lake City	San Francisco	Milwaukee	Salt Lake City	Minneapolis	Las Vegas
7	Houston	Chicago	Phoenix	Dallas	Minneapolis	Denver	Denver
8	Denver	Phoenix	Dallas	Minneapolis	Milwaukee	Salt Lake City	Chicago
9	Detroit	Denver	Las Vegas	Phoenix	Denver	Detroit	Detroit
10	San Francisco	Dallas	Denver	Denver	Phoenix	Chicago	Houston
11	Phoenix	Seattle	Minneapolis	San Francisco	Detroit	Phoenix	Phoenix
12	Las Vegas	Minneapolis	Chicago	San Diego	Houston	Houston	Salt Lake City
13	Philadelphia	Las Vegas	San Diego	Detroit	Chicago	Milwaukee	San Francisco
14	Salt Lake City	Portland	Detroit	Chicago	San Diego	Kansas City	Kansas City
15	Milwaukee	Boston	Houston	Houston	Kansas City	San Diego	Milwaukee

Outputs – Datasets

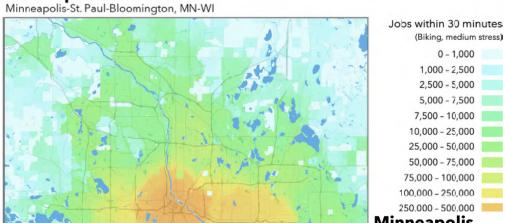
- Produces a national accessibility dataset at the census block level: auto, transit, bike
 - Block-level, segmented by travel time
 - Jobs categorized by wage level, industry, etc.

GEOID	Travel Time	C000	CA01	CA02	CA03	CE01	
123456789123456	30	12345	5678	4567	3456	5678	

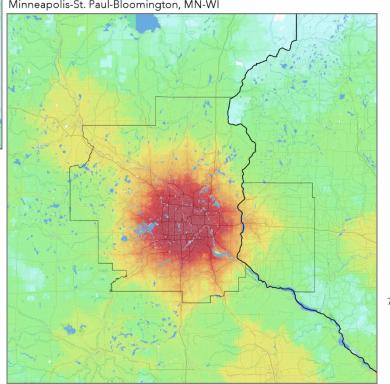
Minneapolis


Minneapolis-St. Paul-Bloomington, MN-WI

Rank by Weighted Accessibility	10	
Rank by Weighted Congestion Impact	26	
Rank by Total Employment	14	
Total Jobs	1,792,445	
Average Job Density (per mi ²)	297	
Total Workers	1,745,960	
Average Worker Density (per mi ²)	289	
Joh and worker totals are based on LEHD estimates and ma	y not match other s	0111


Average Job Accessibility by Travel Time Threshold (worker-wei

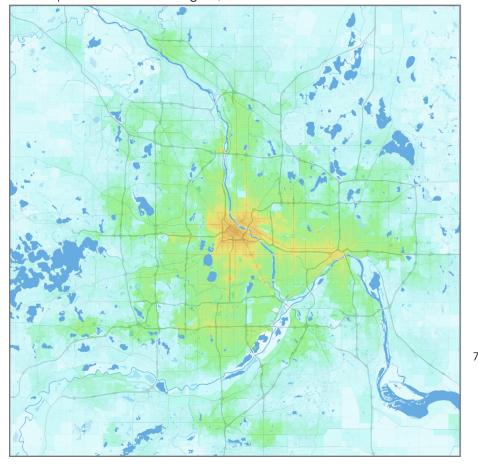
Average Congestion Impact by Travel Time Threshold (worker-v Higher numbers indicate greater job access loss due to congestic


Outputs - Reports

Minneapolis

Minneapolis

Minneapolis-St. Paul-Bloomington, MN-WI


Jobs within 30 minutes

Data Sources

Travel Time

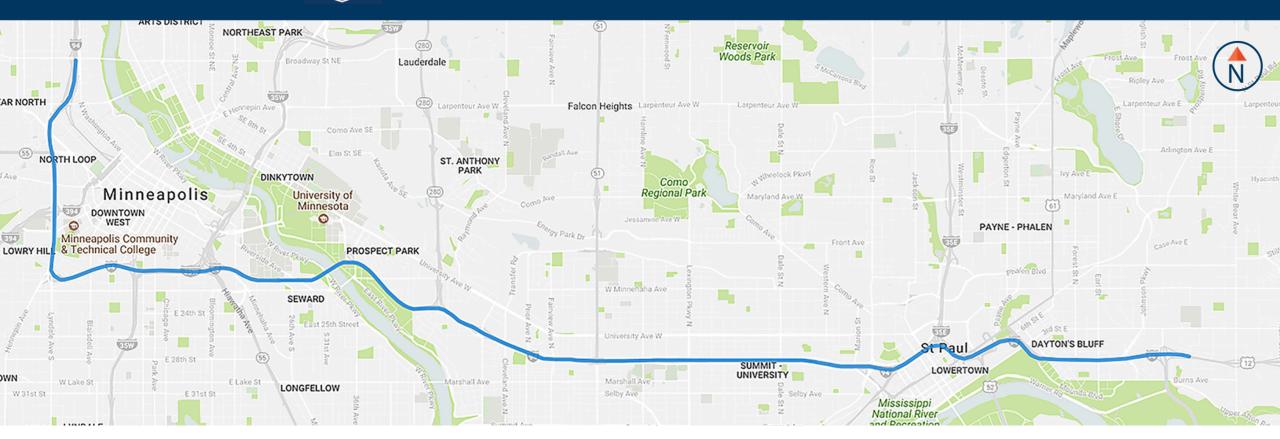
- Auto: TomTom GPS speed data
- Transit: GTFS, Open Street Map network
- Bike: Open Street Map
 - Assumed constant speed: 11.2 mph
- Destinations/Employment
 - LEHD/LODES
 - Federal jobs measurement (2018)

Applications using this data

CONGESTION IN THE COMMONWEALTH

REPORT TO THE GOVERNOR 2019

NCHRP 08-121 Accessibility Measures in Practice Background

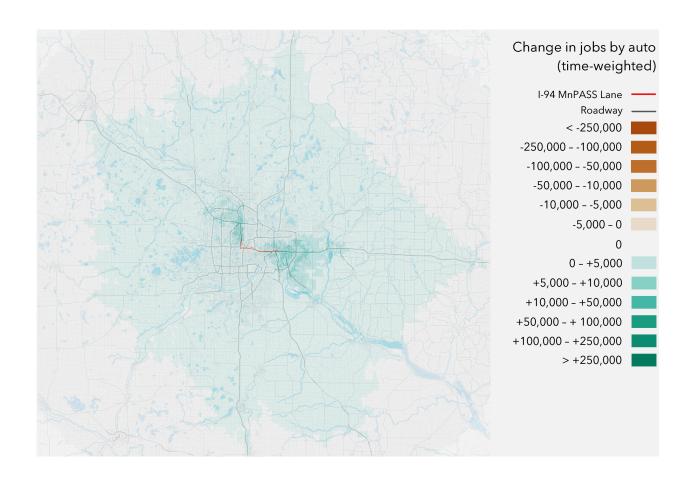

- Two year project: May 2019 September 2021
- Research agency: University of Texas at Austin
- Identifying and implementing meaningful accessibility measures can be challenging; no standard practice for the selection and use of accessibility measures from among the wide array of accessibility metrics, methods, and tools
- Research needed to characterize and evaluate existing accessibility measures and identify valid and feasible measures for a range of decision-making contexts; coupled with guidance and support for implementation

NCHRP 08-121 Accessibility Measures in Practice Objective & Progress to date

- Develop a practitioner-ready resource for transportation agencies on how to select and apply accessibility measures for different decisionmaking contexts
- Background research is complete literature review, surveys, interviews
- Working up content of guidebook pilot early 2021
 - ***Still looking for non-user agencies to participate; please contact me and I'll connect you with TRB staff for more information***

Rethinking 94

DEPARTMENT OF TRANSPORTATION


Rethinking I-94 purpose

Rethinking I-94 has three main purposes

- Make it easier to travel to, along and across the I-94 corridor and establish a sense of place for the communities that live, work and play there.
- Enhance safety and mobility for people walking, biking, driving and using transit.
- Develop a community-based approach focused on reconnecting neighborhoods, revitalizing communities and ensuring residents have a meaningful voice in transportation decisions that affect their lives.

Accessibility impact analysis of managed lanes

- Conducted accessibility impact analysis of managed lanes by auto and transit
- Accessibility benefits found –
 increase in job accessibility for
 auto and transit when operating
 on managed lanes in the
 Rethinking I-94 corridor

Schedule

- Completed: Phase 1 (2016-2018)
- We are here: Phase 2 (2018-2021)
 - 2020:

 Government
 agency
 engagement
 - 2021: Public engagement on draft scoping decision document
- 2022: Select preferred alternative
- 2023: Environmental approvals and prepare for construction projects as funding becomes available

Rethinking I-94 current status

- Environmental documentation phase
 - Following the federal NEPA and state MEPA processes
- Specific alternatives have not been identified
- Access to jobs proposed as a consideration in evaluation criteria (criteria currently in draft form)

Measuring accessibility – a pilot project

- State Smart Transportation Initiative (SSTI) is supporting MnDOT to evaluate the accessibility of communities in Minnesota
- Pilot includes accessibility analysis on transportation projects and on siting of land uses
- Goals to test available platforms, serve as proof of concept, and demonstrate how accessibility analysis can be implemented in practical decision-making
- Project kicked off in January 2020 and is wrapping up

Project location – Hwy 316 in Hastings

THE CORRIDOR EVALUATION RECOMMENDS

Improved safety for all users

Speed reduction measures

Improved highway access

Street access and crossings

Pedestrian and bicycle facilities & connections

Project area is 25 miles southeast of MnDOT's Central office in St. Paul

Highway 316 in Hastings

- Modeled proposed improvements along Highway 316 (Red Wing Boulevard) in Hastings using Conveyal. Road networks are based on data from OSM, modified using an OSM editor called JOSM to reflect current traffic speeds and proposed alignments.
- Study area is characterized by a mix of residential and commercial land uses within close proximity, but there are no bicycle or pedestrian facilities, no marked crossings, and frequent speeding issues.
- Improvements will add a separated bicycle and pedestrian facility, several marked crossings with streetlights and refuge islands, and several roundabouts to calm traffic.

Highway 316 in Hastings

Weighted by

Hastings blocks 2010: hh

Accessibility

50% of hh can access at least 737 Jobs total

50% of hh can access at least 529 Jobs total

Weighted average accessibility: 803

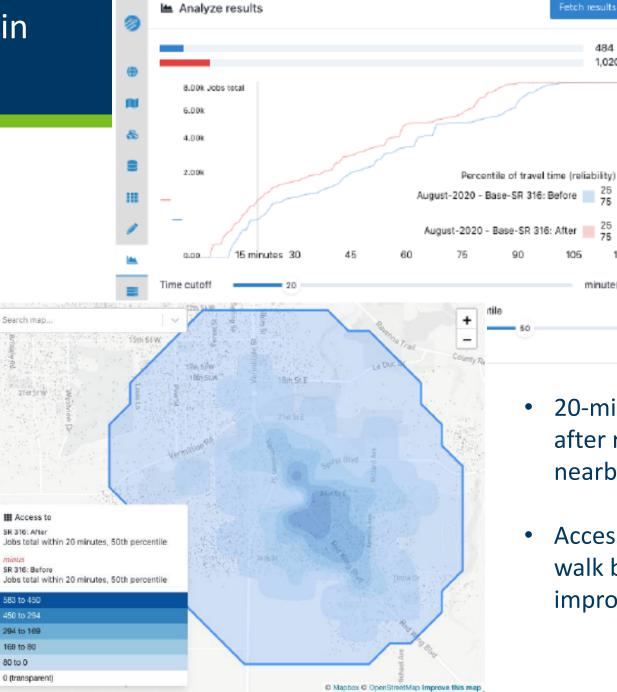
Weighted average accessibility: 743

Percentile of accessibility

SR 316: After

SR 316: Before

III Access to


SR 316: Before

583 to 450

294 to 169

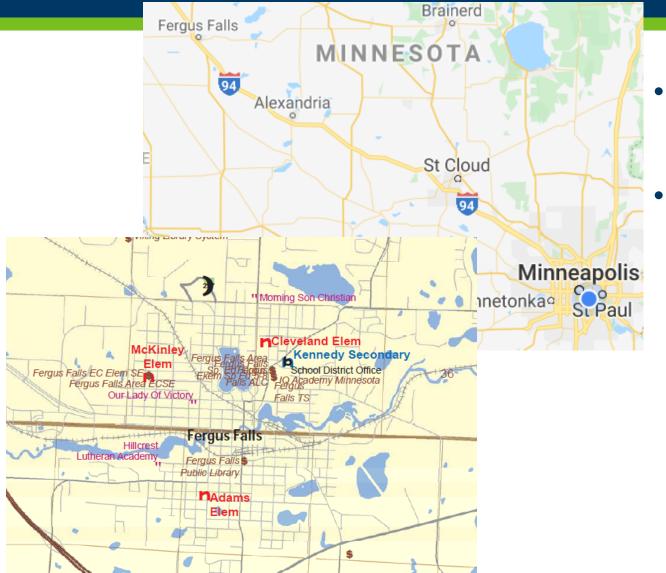
169 to 80 80 to 0

0 (transparent)

20-minute walksheds before and after road improvements from nearby location

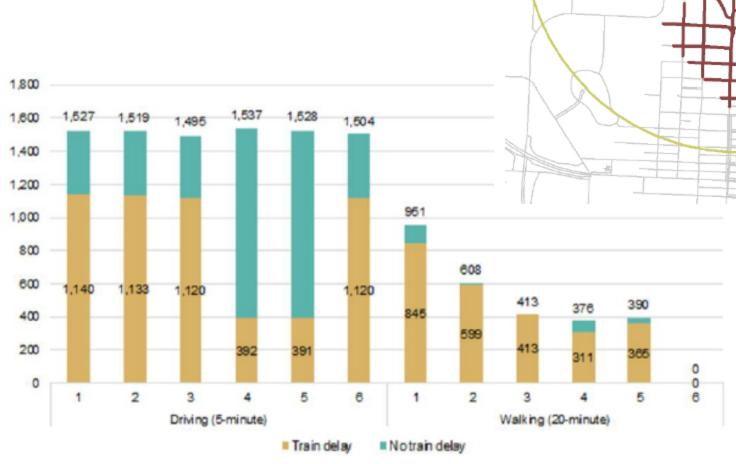
12

Travel time distribution (minutes) -92.849, 44.713


Fetch results 🧿

minute(s)

Access to jobs within 20-minute walk before and after road improvements


Mapbox © OpenStreetMap Improve this map

Project locations – Fergus Falls/Breckenridge School Districts

- Fergus Falls is about 185 miles NW of St.
 Paul; Breckenridge is 26 miles east
- Period the relative accessibility of potential school sites using an open source accessibility toolbox that leverages ArcMap Network Analyst. Road networks are based on data from OpenStreetMap (OSM).

Fergus Falls

- 20-minute walking access from Kirkbride site in Fergus Falls, measured using the street network versus radially
- Access to households from sites in Breckenridge, with and without train delay

Other examples and future

- Other research and implementation examples
 - State DOTs are prioritizing investments with criteria including accessibility impacts (Virginia DOT Smart Scale)
 - FTA Multimodal Connectivity Measures
 - MPOs are setting planning goals based on accessibility (Salt Lake, Twin Cities, others)
- Looking toward accessibility metrics to estimate travel behavior and by extension GHG emissions

Questions

Thank you!

deanna.belden@state.mn.us

System Performance Management - Focus on Accessibility

Partnerships and Case Examples in Florida

Monica Zhong November 18, 2020

Topics

Partnerships

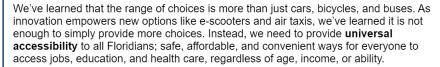
Accessibility Measures

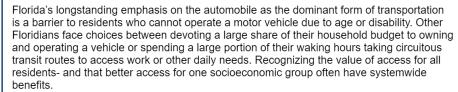
Florida Use Cases

Partnership

Florida Transportation Plan

FLORIDA Transportation Plan Virtual Room



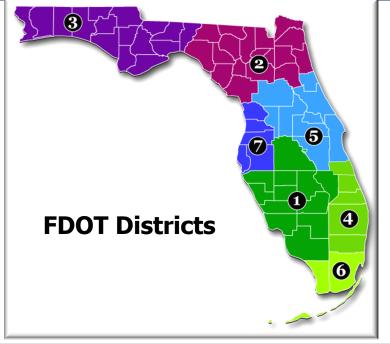


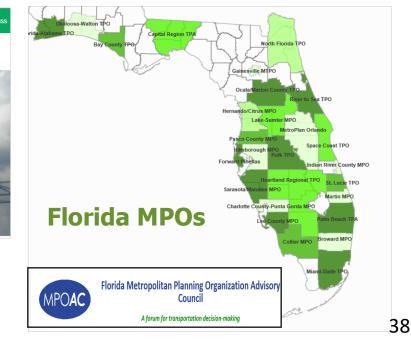
Leave a Comment

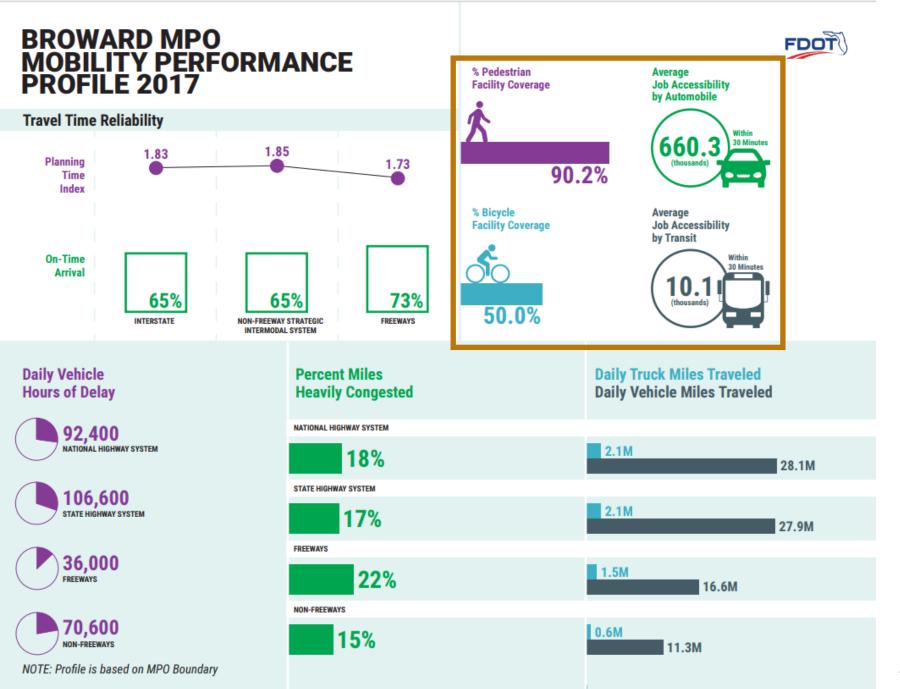
Goal: Transportation Choices that Improve Equity and Accessibility.

To learn more about accessibility of transportation in Florida, visit the FDOT Accessibility Reports.

Input needed: Click here to review draft strategies that help get us closer to this goal. Leave a Comment in the box above and let us know your thoughts.



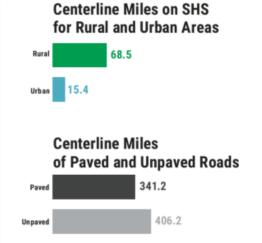

Statewide Mobility Measures Program Team

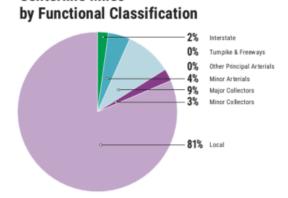


Supporting MPOs/Counties

- MAP 21/FAST Act Target Setting and Reporting
- MPO Mobility Profiles
- County Mobility Profiles

Supporting MPOs




Baker County Transportation Profile 2018

Supporting Counties

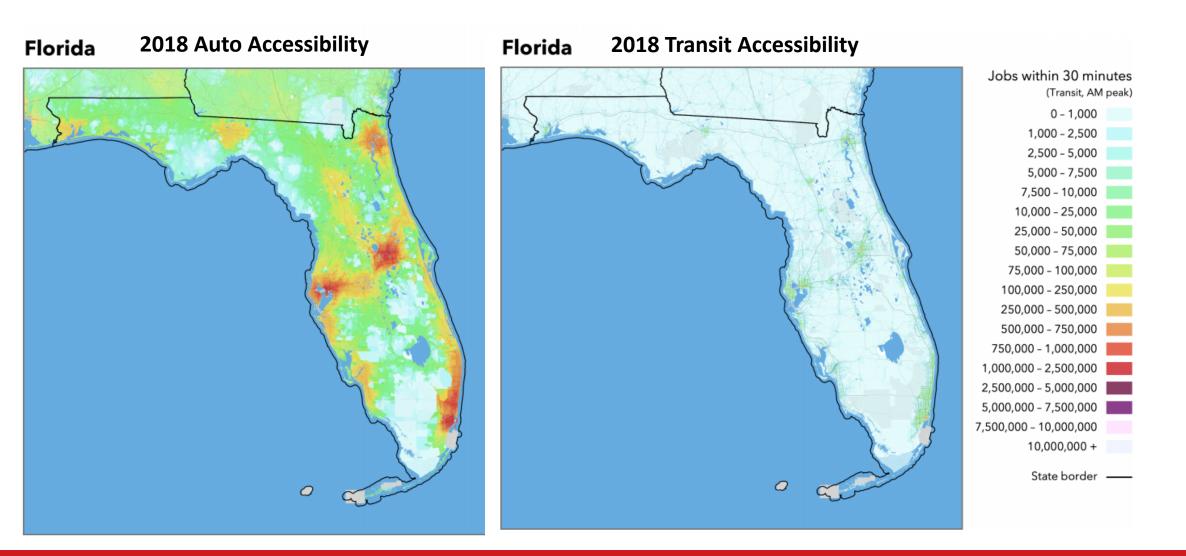
Centerline Miles

Tu

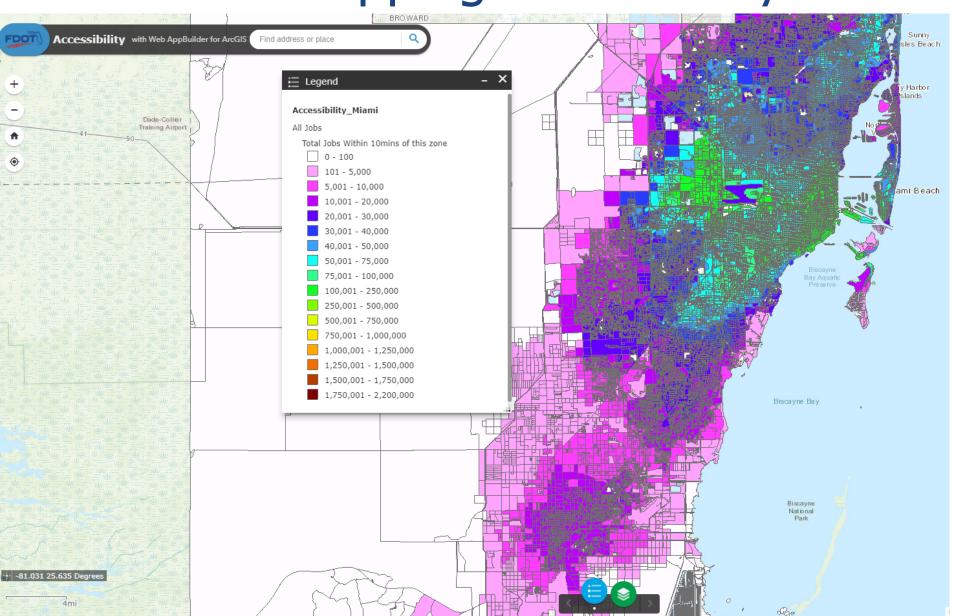
Percentage of Roadways by Context Classification



Accessibility Measures


FDOT Accessibility Measures

THE FOOT SOURCE BOOK



- % pedestrian facility coverage
- % bicycle facility coverage
 - Job accessibility by auto within 40 minutes
 - Job accessibility by transit within 40 minutes
- % population within 1 mile of bicycle facilities
- Resident access to transit (within ½ mile of a fixed route transit)

National Accessibility Evaluation -- Pooled Fund Study

Mapping Accessibility

pplying National Accessibility uation Pooled Fund Study D

Florida Use Cases

Florida Use Cases

FDOT District 4 Use Cases

- 2045 SIS Cost Feasible Plan Project Prioritization
- Systemwide Provisional Context Classification
- I-95 Corridor Mobility Planning Project (CMPP) Pilot Study

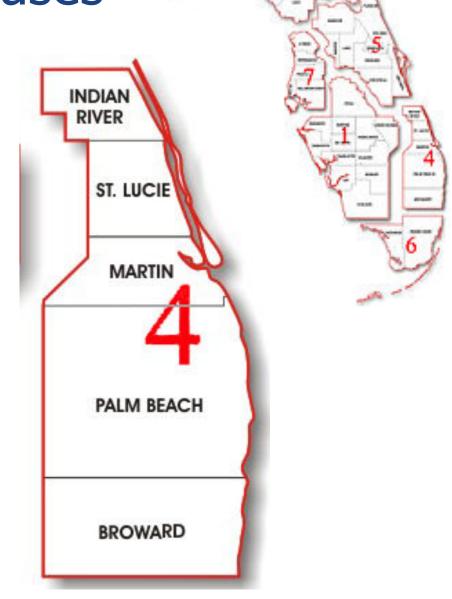


Table 2 Measures for D4 2045 SIS Cost Feasible Plan Project Prioritization

Project Prioritization

Goal	Measures
Safety and Security	Crash Rate
	Fatal Crash Frequency
	Serious Injury Frequency
Agile, Resilient, and Quality	Preservation of Existing Transportation System
	Darliana.

Multimodalism **Transportation Choices ROW Costs** Benefit/Cost (B/C) Ratio **Economic Competitiveness** Supports Economic Vitality Job Accessibility by Auto Job Accessibility by Transit

Job Accessibility by Auto

The job accessibility by auto was calculated using *Access Across America* data from the University of Minnesota. The data provides the number of jobs by automobiles within 30 minutes for each census block. A weighted average method was used to calculate the number of accessible jobs for each project corridor. For a project that is intersected by census block *i*, the formula is:

Number of Jobs Accessible by Automobiles
$$= (\sum_{i} Jobs \ by \ Automobiles_{i} \times Block \ Size_{i}) / \sum_{i} Block \ Size_{i}$$

Scores were given based on the quantile classification of number of jobs accessible by auto for all projects, as shown in Table 13.

Table 13 Job Accessibility by Auto Score – Quantile Classification

Quantile	Score
1 st	1
2 nd	2
3 rd	3
4 th	4

Project Prioritization

Job Accessibility by Transit

Similar to job accessibility by auto, the job accessibility by transit measure was calculated using Access Across America data. The data provides the number of jobs by transit within 30 minutes for each census block. A weighted average method was used to calculate the number of accessible jobs for each project corridor. For a project that is intersected by census block i, the formula is:

Number of Jobs Accessible by Transit
$$= (\sum_{i} Jobs \ by \ Transit_{i} \times Block \ Size_{i}) / \sum_{i} Block \ Size_{i}$$

Scores were given based on the quantile classification of the number of jobs accessible by transit for all projects as shown in Table 14.

Table 14Job Accessibility by Transit Score – Quantile Classification

Quantile	Score	
1 st	1	
2 nd	2	
3 rd	3	
4 th	4	

Project Prioritization

Context Classification Case

Systemwide Provisional Context Classification

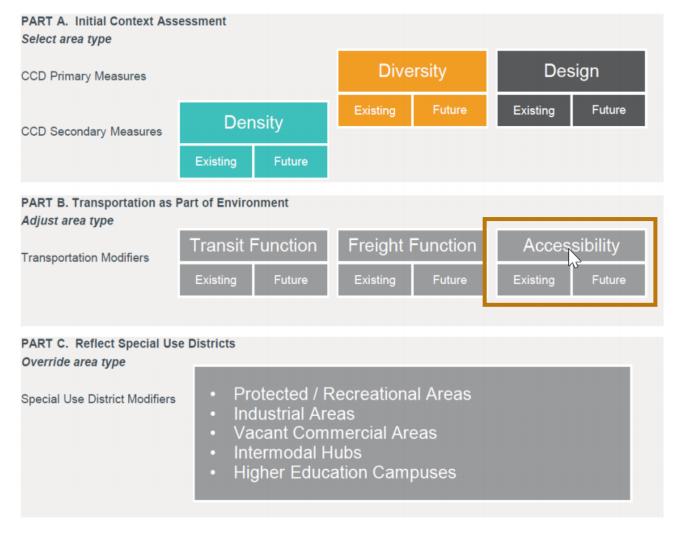


Figure 2. Hierarchical Approach to Systemwide Context Classification/Detailed Analytic Land Use Mapping

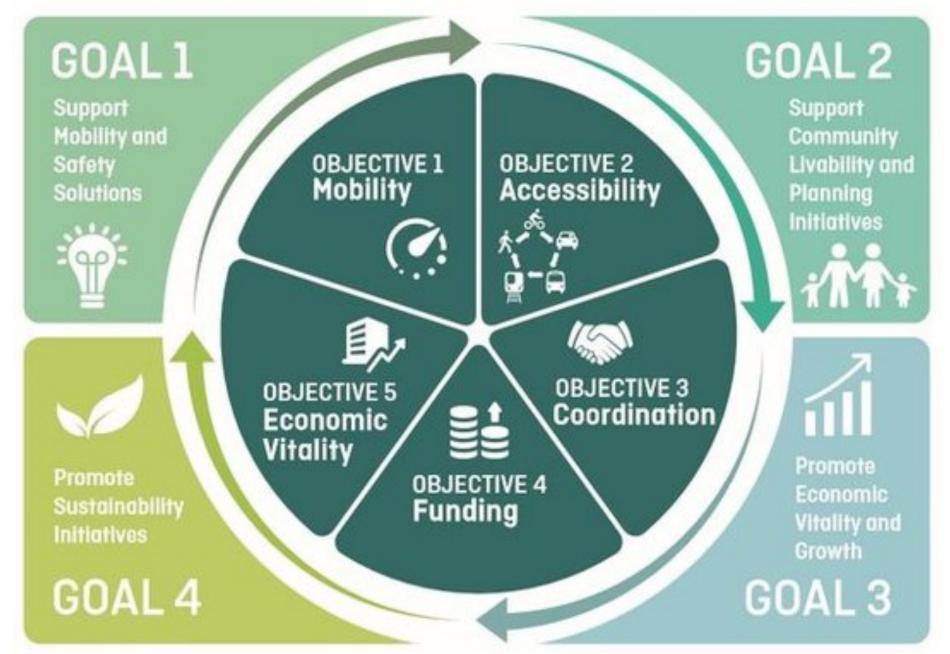
Table 3: SPCC Variable Values

Context Classification Case

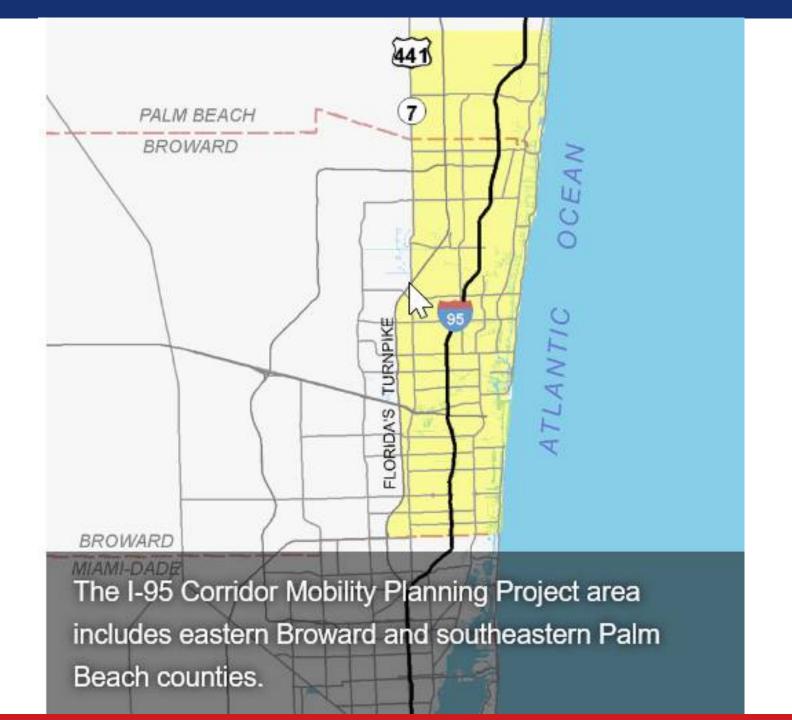
Dimension	Dimension	Indicator	Scale (for existing	Indicator weight		
weight conditions) Baseline classification						
Density	50	Gross FAR (total building area within ½ mile	0 = 1 <=0.05 = 2	100		
		radius)	<=0.4 = 3			
			<=0.85 = 4			
			<= 1.25 = 5			
			> 1.25 = 6			
Diversity	25	Number of different	0 = 1	100		
		uses within 1/4 mile	1 = 3			
			<=3 = 4			
			> 3 = 6			
Design	25	Building placement	No buildings = 1	33		
		(estimated)	> 50 feet = 2			
			>24 feet = 3			
			> 10 feet = 4			
		١.	10 foot 6			

Percent truck traffic

>=5% = -0.33


>=10% = -0.67

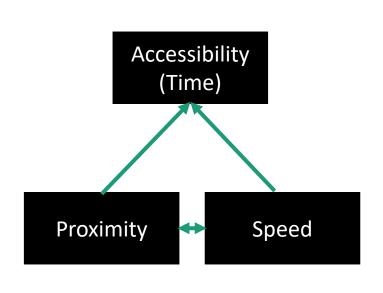
>=15% = -1.00

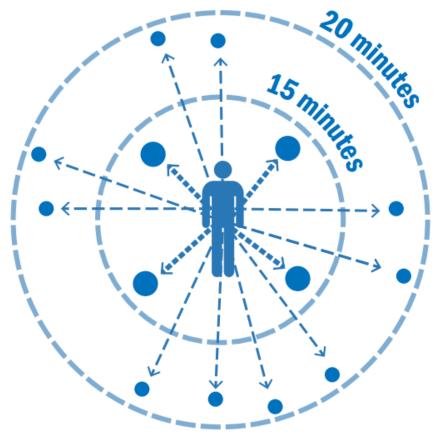

50

Transportation modifiers					
Multimodalism	100	Transit accessibility	>= 150,000 = +1.00	33	
		(jobs reachable)	>= 100,000 = +0.67		
			>= 50,000 = +0.33		
		Transit service	>= 24 = +1.00	33	
		frequency (departures	>= 12 = +0.67		
		per hour)	>= 8 = + 0.33		
		Walk accessibility (jobs	>= 30,000 = +1.00	34	
		reachable)	>= 20,000 = +0.67		
			>= 10,000 = +0.33		
			~- U,UUU = -1.UU =	_	

I-95 CMPP Pilot Study

I-95 CMPP Pilot Study

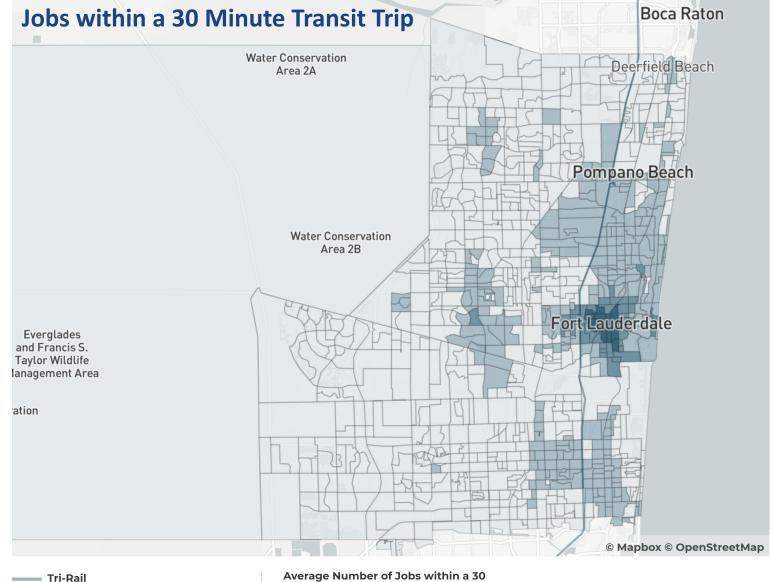

I-95 CMPP Pilot Study Performance Measures


- Multimodal accessibility (MMA)
- Multimodal system productivity (MSP)

Both measures focus on travel time accessibility to destinations

Measuring Accessibility

Where do I need to go, and how can I get there?



Accessibility under Different Scenarios

Travel Mode	Existing Scores	Future Scores no strategy	Future Scores with strategy
Auto accessibility score	20,000	40,000	35,000
Transit accessibility score	2,000	6,000	11,000
Bicycle accessibility score	2,000	5,000	6,000
Walk accessibility score	1,000	1,500	3,000

Broward MPO

The State of Broward's Transportation System

https://dashboards.mysidewalk.com/broward-mpo-performance-dashboard/system-overview

Hillsborough MPO

Hillsborough MPO 2045 LRTP – Needs Assessment

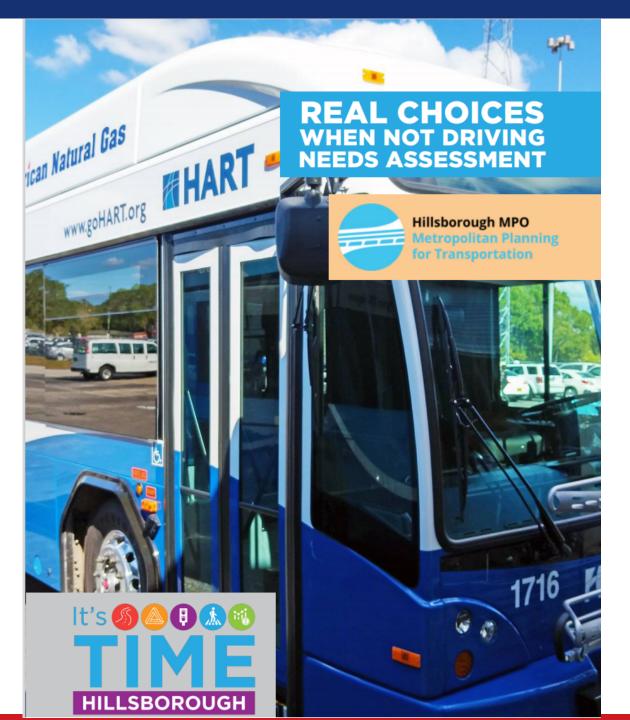


Figure 8: Communities of Concern and Trails/Sidepaths

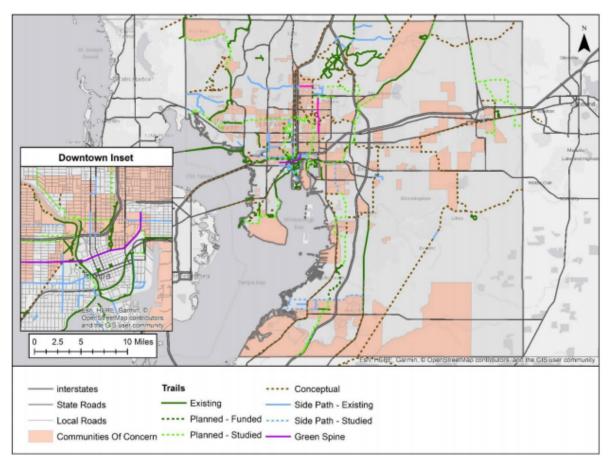
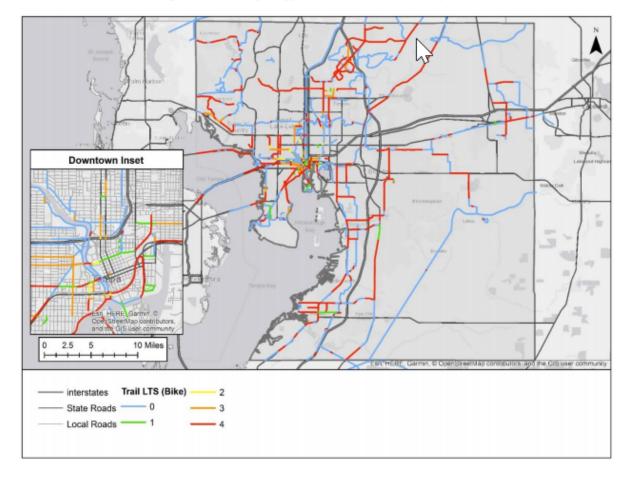



Figure 9: Level of Traffic Stress and Trails/Sidepaths

Access to/from
Communities of Concern

Bicycle Level of Traffic Stress

Appendix A: Transit Performance Measures, Investment Impacts and Costs

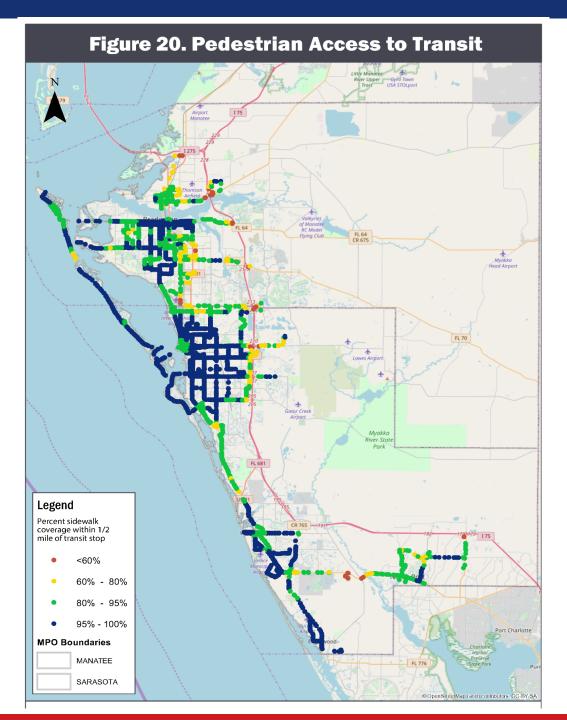
Countywide Statistics

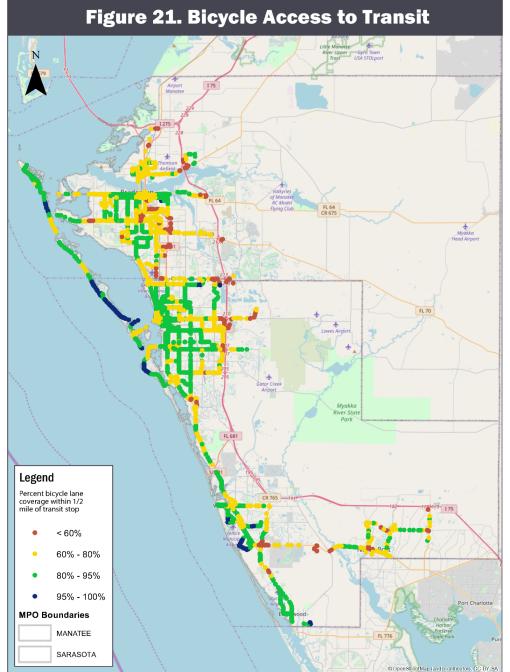
Transit LOS	Population within ¼ mile	Jobs within ¼ mile	People & Jobs within ¼ mile	% of countywide population	% of countywide jobs	% of countywide population & jobs	Roadway Centerline Miles*		
	Existing Service								
Α	121,527	186,456	307,983	10%	22%	15%	35		
В	66,545	61,681	128,226	5%	7%	6%	17		
A-B	188,072	248,137	436,209	15%	30%	21%	52		
С	93,290	83,515	176,806	7%	10%	8%	60		
D	84,958	73,290	158,248	7%	9%	8%	132		
C-D	178,249	156,805	335,054	14%	19%	16%	192		
E	46,465	25,670	72,135	4%	3%	3%	69		
F	858,828	401,688	1,260,516	68%	48%	60%	87		
			Trend	d Investment					
Α	438,166	513,989	952,155	22%	42%	30%	83		
В	24,817	17,675	42,492	1%	1%	1%	13		
A-B	462,983	531,664	994,647	23%	43%	31%	96		
С	160,195	119,734	279,929	8%	10%	9%	176		
D	43,357	22,479	65,836	2%	2%	2%	44		
C-D	203,552	142,213	345,765	10%	12%	11%	220		
E	0	0	0	0%	0%	0%	0		
F	1,304,447	562,273	1,866,720	66%	45%	58%	59		
		Tre	nd + Sales Ta	ax Revenue In	vestment				
Α	701,574	688,676	1,390,247	36%	56%	43%	258		
В	25,205	27,391	52,596	1%	2%	2%	48		
A-B	726,779	716,064	1,442,843	37%	58%	45%	306		
С	95,317	66,380	161,697	5%	5%	5%	393		
D	14,209	8,287	22,496	1%	1%	1%	77		
C-D	109,526	74,667	184,193	6%	6%	6%	470		
E	0	0	0	0%	0%	0%	0		
F	1,134,677	445,419	1,580,096	58%	36%	49%	280		

^{*}Number of miles in LOS F does not include roadways without bus service

2015 Countywide Population: 1,271,613 2015 Countywide Employment: 1,112,573 2045 Countywide Population: 1,970,982 2045 Countywide Employment: 1,236,150

Population/Jobs Miles of Transit Services


Sarasota/Manatee MPO


Active Transportation Plan (2019)

Transit Development Plans

2045 Long Range Transportation Plan (2020)

Bike/Pedestrian

Southeast Florida Use Cases

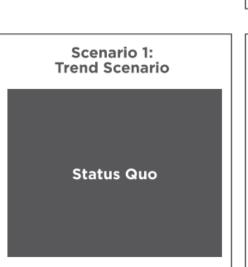
Planning for Different Future Scenarios

TRANSIT SUPPORTIVE DENSITY

1. HIGH-CAPACITY TRANSIT NEEDS:

What regional-scale transit services are needed to accommodate the future growth anticipated for the region?

2. GROWTH AND DEVELOPMENT:


Are changes in development patterns necessary to complement regional high-capacity transit investments?

3. FINANCIAL AND LEGISLATIVE:

What changes to policy and legislation will allow for greater flexibility in how existing revenue sources are used? What new revenue sources can feasibly generate revenue for regional transportation infrastructure?

Scenario 2: Regional Transit Scenario

Acquire New Revenue

Create Flexibility in Existing
Revenue

Build High-Capacity Transit System

Status Quo Development Patterns

Legislative Change Needed

LEGISLATIVE CHANGE NEEDED

Unchanged Future

Alternative Future

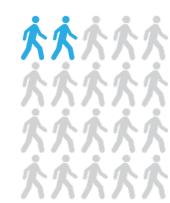
High-capacity transit system ridership ~190,000

Daily riders

~665,000

Daily riders

Walkable access to high-capacity transit from home


1 out of 20 people

7 out of 20 people

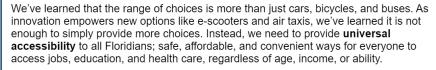
Walkable access to jobs from high-capacity transit

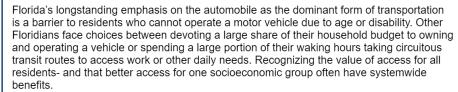
2 out of **20** jobs

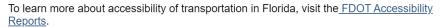
10 out of **20** jobs

Florida Transportation Plan

FLORIDA Transportation Plan Virtual Room




Choices Station


Leave a Comment

Goal: Transportation Choices that Improve Equity and Accessibility.

Input needed: Click here to review draft strategies that help get us closer to this goal. Leave a Comment in the box above and let us know your thoughts.

Thank You!

Contact

Monica Zhong 850-414-4808

Monica.Zhong@dot.state.fl.us

https://www.fdot.gov/planning/fto/accessibility/

Applications of Accessibility Tools and Data

Derek Krevat

MassDOT Office of Transportation Planning

TPM Webinar - System Performance Management - Focus on Accessibility

November 18, 2020

Outline of Presentation

- Accessibility Definition
- Three Applications of Accessibility Data
 - Congestion Management Planning
 - Project Scoring
 - Transit Service Planning

Defining Accessibility

Accessibility Definition

- Accessibility Observatory: The ability of people to reach the destinations that they need to visit in order to meet their needs.
- **David Levinson**: The measurement of how much stuff (jobs, workers, etc.) someone can reach from a specific point in a given travel time (say 30 minutes) by a particular mode at a certain time of day.

Mobility-Oriented Planning Outcome

Accessibility-Oriented Planning Outcome

Inner Loop, Rochester, NY

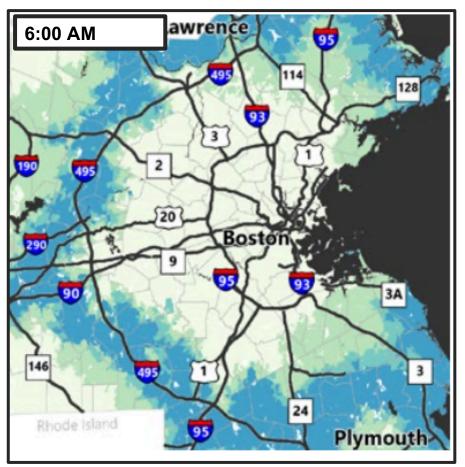
Canal Street, New Orleans, LA

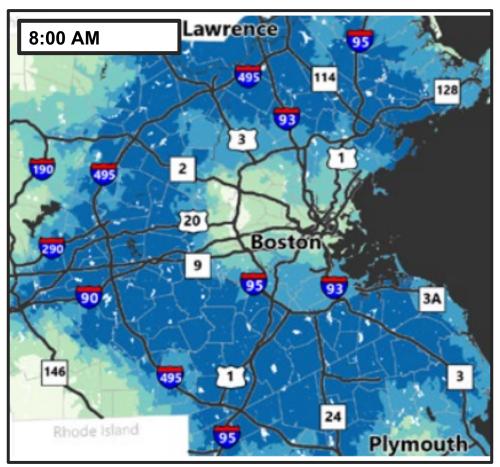
Accessibility Data Sources and Software

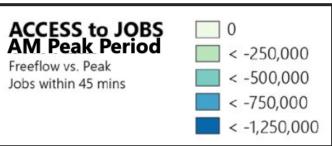
- National Accessibility Evaluation Pooled-Fund Study
 - Accessibility is calculated as a cumulative opportunity index by computing the travel time from each block to surrounding blocks, and then adding up the total number of jobs that can be reached within different travel time thresholds.

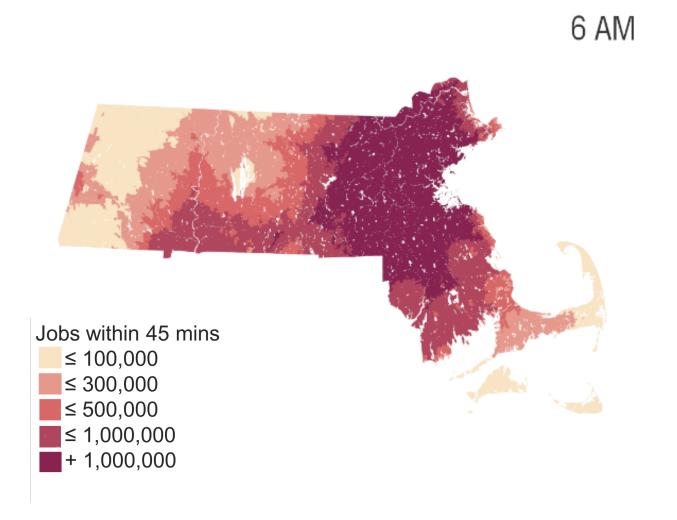
- Conveyal
 - Web-based software allowing users to evaluate changes to transportation networks and public transportation systems using accessibility indicators.

Application of Accessibility Data to Congestion Management Planning

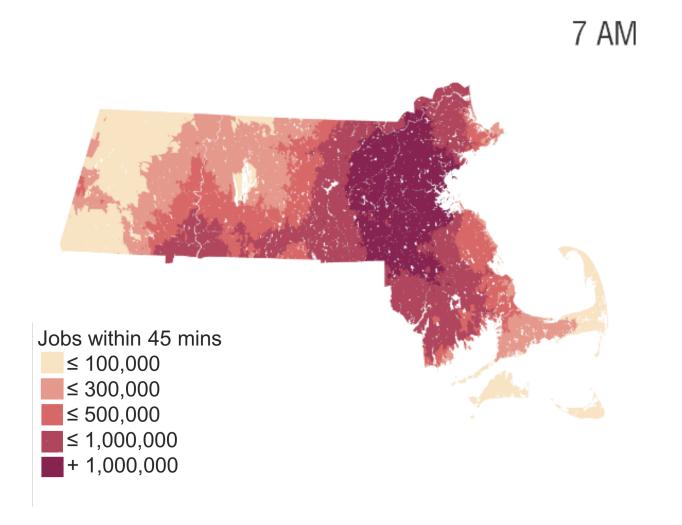

MassDOT Congestion in the Commonwealth Report


- The 2019 "Congestion in the Commonwealth" report presented a data-driven analysis and set of next steps for how to respond to congestion in Massachusetts.
- The report documented the most severely congested corridors in Massachusetts, identified the causes and implications of congestion, and made recommendations across modes.

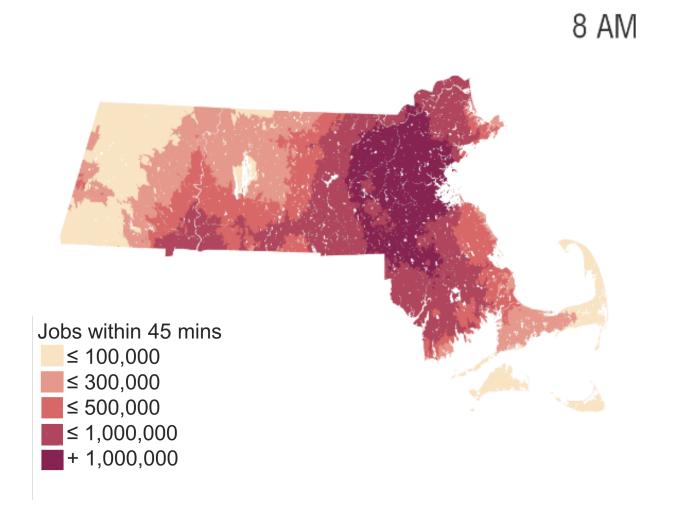

The Impact of Congestion on Access to Jobs in Greater Boston


Source: Accessibility Observatory, June 2018. http://ao.umn.edu/research/america/

Note: Rankings are for access to jobs within 45 minutes travel time.

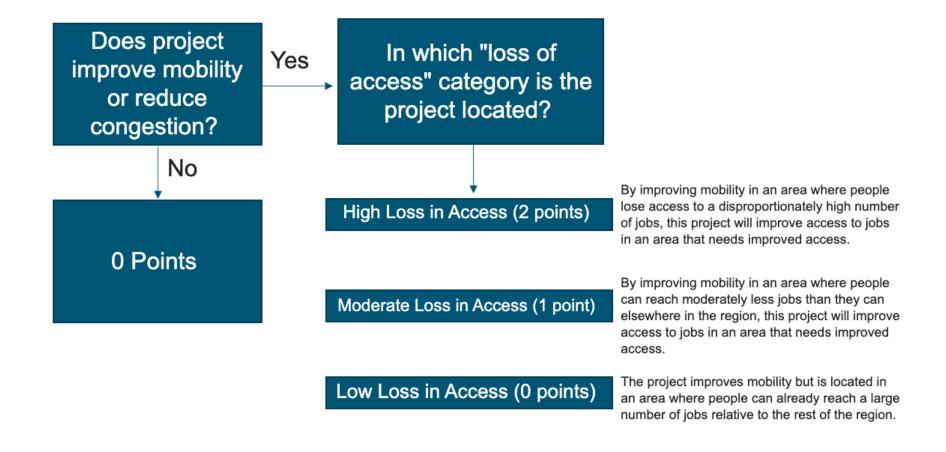


The Impact of Congestion on Access to Jobs Statewide



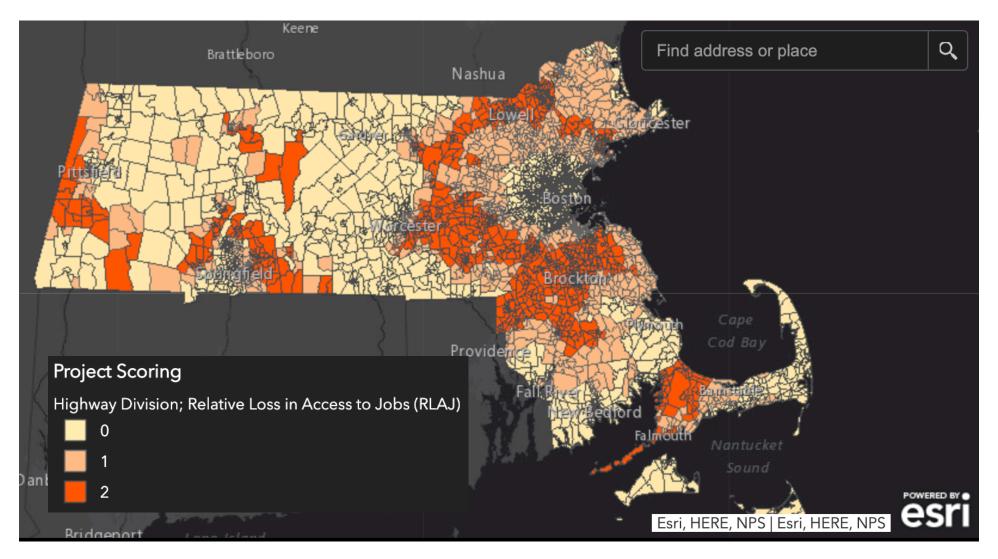
The Impact of Congestion on Access to Jobs Statewide

The Impact of Congestion on Access to Jobs Statewide


Application of Accessibility Data to Project Scoring

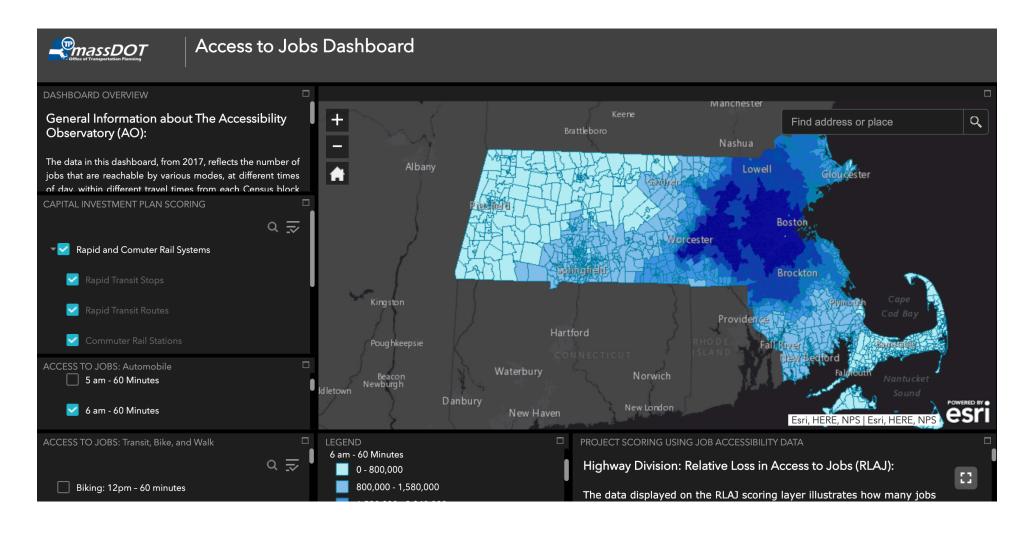
Accessibility Criterion within MassDOT Highway Division's Project Score Card: Relative Loss in Access to Jobs (RLAJ)

Criterion	Description	Points
	Project is in an area that experiences a relatively high amount of loss in access to jobs during peak periods -OR-	2
Workforce Commuting & Accessibility	Project creates a NEW connection to an area with greater than 2 jobs/acre	
Score based on data gathered through the	Project is in an area that experiences a moderate amount of loss in access to jobs during peak periods and the project will improve access to jobs	1
	Project is in an area that experiences minimal or no loss in access to jobs during peak periods	0



Flow Chart for Scoring "Loss in Jobs Access" Criterion

Map Used for Scoring RLAJ Criterion



^{*} Available within the public-facing Massachusetts Access to Jobs Dashboard at the following link: https://massdot.maps.arcgis.com/apps/webappviewer/index.html?id=134d560d26464ee6baf7b15c0446e5fd

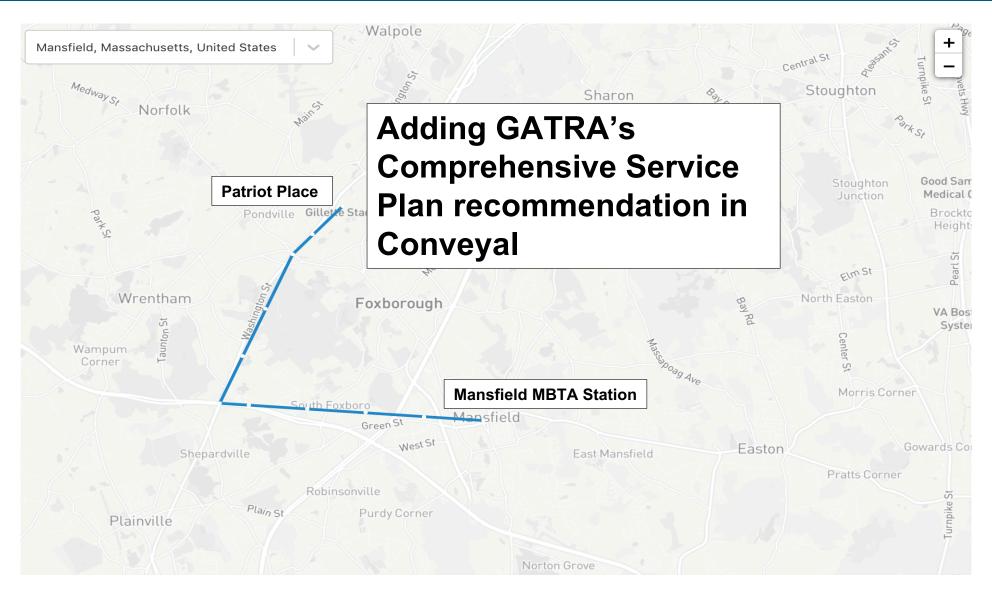
^{**} The data used within this dashboard is from the Accessibility Observatory

Access to Jobs Dashboard

^{*} Available within the public-facing Massachusetts Access to Jobs Dashboard at the following link: https://massdot.maps.arcgis.com/apps/webappviewer/index.html?id=134d560d26464ee6baf7b15c0446e5fd

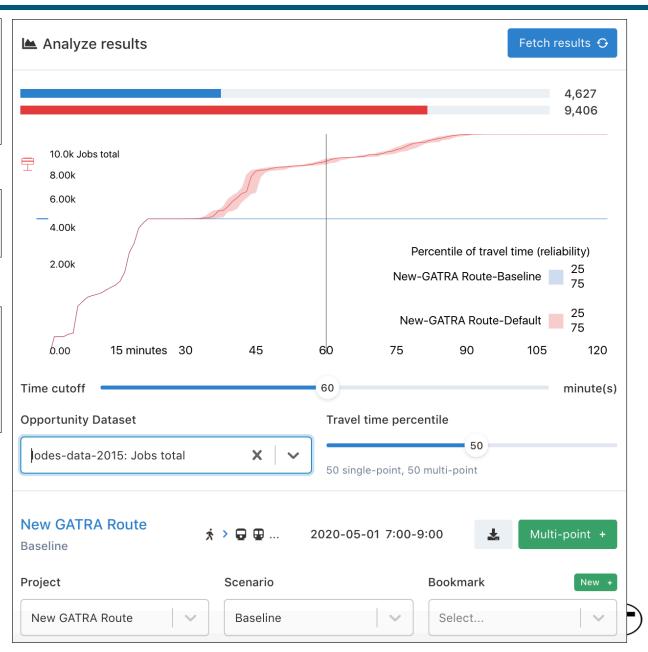
^{**} The data used within this dashboard is from the Accessibility Observatory

Application of Accessibility Data to Transit Service Planning

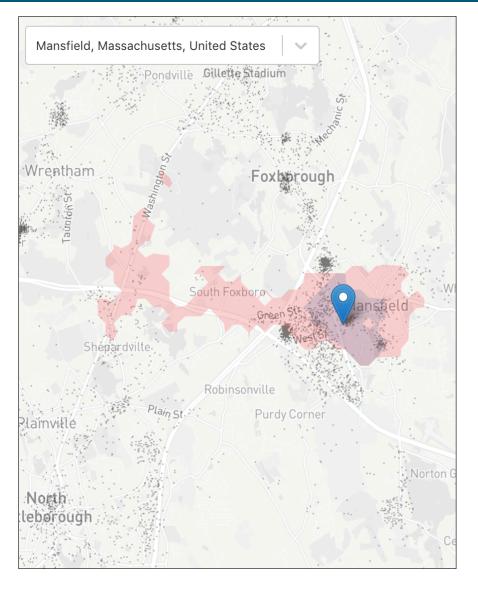

Transit Service Planning

- Tools such as Conveyal can be used to estimate the impacts of transit and roadway projects on accessibility indicators (e.g. number of accessible jobs resulting from new transit route).
- The quantification of these impacts can be used for the following activities, among others:
 - Evaluation of alternative transit schedules and/or new routes
 - Analysis of equity impacts on service changes
 - Project prioritization
 - Establishment of buy-in for new projects

- The example described in the following slides analyzes the change in the number of accessible jobs within a 60-minute transit trip resulting from a new proposed route with the Greater Attleboro-Taunton Regional Transit Authority's (GATRA) most recent Regional Transit Plan.
- The recommendation was for a new route to be created between the Mansfield MBTA Commuter Rail Station and Patriot Place.



Adding GATRA's Comprehensive Service Plan recommendation in Conveyal


- Gain access to 4,779 jobs via transit
- Blue = BaselineScenario
- Red = New Route Scenario

Adding GATRA's Comprehensive Service Plan recommendation in Conveyal

- Gain access to 4,779 jobs via transit
- Blue = Baseline Scenario
- Red = New Route Scenario

Thank you!

Derek Krevat

Massachusetts Department of Transportation

Derek.Krevat@dot.state.ma.us

Questions?

Submit your questions using the Webinar's Q&A feature

Webinar 5: Risk Management and TPM

- This webinar focuses on risk management in the context of TPM
- Presentations will address:
 - Highlights of national efforts related to risk and TPM
 - Anticipated benefits, risk and resilience
- When: January 20, 2021 2:00 Eastern Time

All TPM Webinars: https://www.tpm-portal.com/tpm-webinars/ Please let us know of any topics you would like featured in 2021: tpmpooledfund@tpm-portal.com

Save the Dates!

A bimonthly webinar series, Wednesdays at 2:00 PM EST

- > January 20, 2021 2:00 PM Eastern Time
- March 17, 2021 2:00 PM Eastern Time
- May 19, 2021 2:00 PM Eastern Time
- > July 21, 2021 2:00 PM Eastern Time
- > September 15, 2021 2:00 PM Eastern Time
- November 17, 2021 2:00 PM Eastern Time

For more information or to register:

https://www.tpm-portal.com/tpm-webinars/